
PVP-Recon: Progressive View Planning via Warping Consistency for
Sparse-View Surface Reconstruction - Appendix

A1 ADDITIONAL EXPERIMENT DETAILS
We conduct experiments on three datasets. To evaluate the recon-
structed surfaces, we use the DTU [Jensen et al. 2014] and Blended-
MVS [Yao et al. 2020] datasets. To evaluate the rendering quality,
we use the Blender [Mildenhall et al. 2020] dataset. For a scene
in these datasets, there are typically 50-150 views. We directly set
the camera poses of all dense views as candidate viewpoints of
PVP-Recon, but assume that images under these viewpoints are cur-
rently not acquired to simulate our problem setting. Specially, since
generalization-based baselines (SparseNeuS [Long et al. 2022], Vol-
Recon [Ren et al. 2023]) require a long pretraining process on mul-
tiple scenes, while other methods only optimize on a single scene,
we do not compare the time consumption of generalization-based
methods. Also, we do not compare generalization-based baselines
on the Blender dataset, as these methods are pretrained on DTU
scenes and cannot generalize to Blender scenes.

For the DTU dataset, the resolution of our input images is 800×600.
For the BlendedMVS dataset, the resolution of our input images is
768×576. For the Blender dataset, the resolution of our input images
is 800 × 800. The total iterations of surface optimization are 10,000.
To accelerate training, we also employ NerfAcc [Li et al. 2023a] for
efficient sampling in the volume rendering pipeline.

Although PVP-Recon outperforms other baselines on most scenes
of the DTU dataset, we observe that scan106 is an exception. The
ground-truth 3D model of scan106 has a hole, while our optimized
SDF tends to fill this hole to generate a watertight mesh surface,
leading to a drop in the reconstruction accuracy. Nevertheless, PVP-
Recon produces comparable or better results on other scenes and
achieves the lowest Chamfer distance on average.

A2 ABLATION OF NORMAL PRIOR
In our loss term, we add a normal loss that constrains the normal
vectors rendered by the reconstruction module to be consistent
with the pseudo ground-truth normal vectors predicted by Om-
nidata [Eftekhar et al. 2021]. Omnidata is a state-of-the-art monocu-
lar surface normal estimation model trained on 14.5 million images.
We assume that Omnidata provides valuable normal prior informa-
tion that facilitates the optimization of mesh surfaces.
In Figure A1, we show the ablation results of removing normal

prior regularization. Note that the normal prior serves as a neces-
sary constraint, especially in textureless regions where color does
not provide sufficient supervision. The reconstruction accuracy de-
creases when normal constraints are removed.

A3 THE DIFFERENCE BETWEEN NEURALANGELO
Both our reconstruction module and Neuralangelo [Li et al. 2023b]
adopt multi-resolution hash features to represent SDF, as hash fea-
tures excel at capturing fine-grained details. Additionally, Neuralan-
gelo uses a coarse-to-fine training scheme that gradually reduces the
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Fig. A1. Ablation results of the normal prior (DTU scan110). Without the
normal constraints, artifacts will appear in textureless regions.

step size of its proposed numerical gradients and increases the reso-
lution of hash features. The entire optimization process is lengthy
(as also mentioned in their paper). Different from theirs, our scheme
focuses on solving the severe overfitting problem under sparse-view
SDF optimization. We design a progressive training scheme that
linearly activates hash features according to training iterations, and
a directional Hessian loss for further regularization. Furthermore,
we first use down-sampled images to enlarge the sampling receptive
field, and switch to full-resolution images after the training process
stabilizes. By leveraging the above techniques, our model converges
much faster. Experiment results show that our PVP-Recon can gen-
erate better results in ten minutes, while Neuralangelo requires
several hours of optimization.

A4 CHOICE OF TARGET WARPED VIEWS
Our view planning module utilizes a warp-based scoring strategy.
To assess the potential contribution of a candidate camera pose, we
render the image and depth under this pose using the reconstruction
module, and warp the rendered image to one of the existing training
views. The problem is how to decide which training image to warp
to. In practice, we warp to the training image whose camera pose is
closest to this candidate pose. This strategy is simple and effective,
and ensures that the source and target images have considerable
overlap to avoid meaningless warping results. We also extend this
strategy by warping the rendered image to 𝐾-nearest training im-
ages and averaging the scores. Table A1 reports the reconstruction
quality by setting 𝐾 to different values (𝐾 = 1, 2, 3). We observe that
directly warping the rendered image to its closest training image
(𝐾 = 1) yields the best results. Therefore, we use𝐾 = 1 as the default
setting in our warp-based scoring strategy.
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